互动游戏知识图谱怎么画
创始人
2024-12-24 00:16:07
0

一、大数据和AI怎么与现代教育相结合

本文长度为2600字,建议阅读8分钟

未来大数据、人工智能对教育的变革将持续发酵。

欢迎转载,须署名并注明来自“刘鹏看未来”公众号,并保留本句。

比尔盖茨曾预言,“5年以后,你将可以在网上免费获取世界上最好的课程,而且这些课程比任何一个单独大学提供的课程都要好。”

现在看来,虽然并不是每个网上课程都能强过大学教程,但是在线教育已经成为现实,据业内人士估算,目前中国在线教育用户数量过亿,市场规模达数千亿元,而且线上学习者也是受益良多。

不仅在线教育成为了新的风口,同时在大数据与人工智能的加持下,教育行业的相关应用正在进入深水期,现代教育的形式正在悄然改变。

大数据+AI赋能教育

目前,大数据+AI正在赋能各行各业,教育也不例外,人脸识别、语音识别等智能技术开始用于语文、英语、音乐等学科,为教育提供更加智能化、个性化的解决方案。

从教学过程来看,落实到授课、学习、考评、管理等各个方面,大数据+人工智能可以使教育在形式和内容方面都能趋于多样化。

授课

“不得不承认,对于学生,我们知道得太少。”这是卡耐基梅隆大学教育学院的一句经典名言,同时也是教育领域普遍存在的议题。

对于80、90以及更早的几代,从小学到大学接受的都是生产线教育,一代学生应用同一套教材,一个学科由一个老师负责,并通过同一套标准进行考核,因为个性化的私人教育仍属奢侈品。

现在,大数据与AI可以帮助轻松实现自适应教育与个性化教学。在教学方式方面,智慧课堂可以为老师提供更为丰富的教学手段,全时互动、以学定教,老师上课时也不再是只有一本教科书,而是可以任意调取后台海量的优质学习资源,以多种形式展现给学生。

比如,语音识别和图像识别在教育上的应用,大大提高了师生的教学体验。对于某个英语句子,可以通过手机拍照上传到云端,系统会根据海量的语音素材,用合适的语气和语调阅读这句话,还可以与语音测评技术结合,让学生跟读这句话,并由系统做出测评并反复朗读打分。

同时,通过虚拟现实、增强现实与大数据的珠联璧合,尽可能还原教育场景,让学生爱学、乐学,学习效果也能有质的飞跃。比如谷歌通过引入AR与VR技术,创造教学应用“实境教学”,正在悄然改变课堂的活动方式。

在教学过程中,通过收集和分析学生日常学习和完成作业过程中产生的数据,老师即能准确知晓每个学生的知识点掌握情况,为每一位学生有针对性地布置作业,达到因材施教的效果。

此外,未来机器人教学也将成为一种趋势,此前在乔治亚理工学院的一个300多人的课堂上,人工智能机器人教吉尔沃森(Jill Watson)担任了一个月助教,会在第一时间回复邮件,而且口吻并不机械,因此并没有人发现她其实是一个机器人。

学习

对于学生而言,在学习过程中,一方面可应用大数据技术,根据知识点的相互关系,制作知识图谱,制定学习计划,另一方面,数据挖掘技术可以帮助进一步分析学生个人的学习水平,并建立与之相匹配的学习计划,并由AI系统确定如何为学生提供个性化补充指导,以帮助高效学习,避免题海战术。

比如,过去需要3个小时练习的考题,也许真正需要掌握的知识点只需要花费半个小时。那么应用大数据与人工智能,就可以不断对学生的学习成果进行评估,并有针对性地推荐适合每个学生的练习,节约时间,却能达到更好的学习效果。

同时,利用图像识别技术,也能进一步提高学习效率。如今,学生们可以通过手机拍摄教材内容或作业题目,分析照片和文本,并显示相应的要点与难点。随后,在线课堂、百科链接,以及教师上传的PPT以及 PDF文件等,为自主学习提供了更多可能性,整个过程运用机器学习和自然语言处理技术来收集处理。

另外,在线教育发展得如火如荼,通过提供视频教学、谜语、游戏等灵活多样的课程形式以及优质丰富的课程内容,使学习不只限于某时某地,可以灵活有效地安排学习计划。

其中,就编程而言,越来越多孩子通过在线教育进行学习。如编程猫依靠人工智能和数据挖掘系统,为6~16岁青少年提供了图形化编程平台,并针对不同学生进行差异化课程推送。学生在平台上通过使用图形化编程语言创作游戏、软件、动画、故事等作品,可以同步锻炼提升逻辑思维能力、任务拆解能力、跨学科结合能力和团队协作能力等。

考评

在传统教育中,考试与评价可以说耗费了老师们的大量时间。如今,大数据、文字识别、语音识别、语义识别等技术的日趋成熟,使得规模化的自动批改和个性化反馈走向现实。

通过应用大数据与人工智能,老师只需将需要批阅的试卷进行扫描,就能实时统计并显示扫描过的试卷份数、平均分、最高分,以及最集中的错题和对应知识点,一目了然,方便进行全面、实时分析。

如果需要对几十万、几百万份考试试卷进行分析,也能通过精准的图文识别以及海量文本检索技术,快速核对检查所有试卷与目标相似的文本,并迅速提取并标注出可能存在问题的试卷,帮助实现智能测评。

在这方面,科大讯飞可以说走在行业前沿,其英语口语自动测评、手写文字识别、机器翻译、作文自动评阅技术等已通过教育部鉴定并应用于全国多个省市的高考、中考、学业水平的口语和作文自动阅卷。

管理

如果说学习者大多只是关注“学”的部分,那么学校教育则需要在教学之外,进一步分析教育行为数据,做好管理工作。通过智能技术,充分考虑包括教务处、学生处、校办、校务处等部门在内的校园管理需求,学校可进一步采集、记录、分析教与学及其相关教育行为,更好地勾勒出教育教学的真实形态,有效推进教学信息化。

目前,一些高校已经建立了学生画像、学生行为预警、学生家庭经济状况分析、学生综合数据检索、学生群体分析等功能应用,帮助更好地分辨学生在专业学习或就业方向上的潜能,从而为学生提供个性化的管理与培养方案。

例如,面对多样的选课需求,如何合理排课成为一个亟待解决的难题,而在没有人工智能的时候,老师排课往往需要几周时间,还不能保证让学生都满意。现在用人工智能算法进行排课,学生只需提交自己的课程选择,系统可以结合课程、教室、师资进行快速的排课,大大提高效率与学生满意度。

在教育领域,这只是开始,大数据、人工智能对教育的变革还将持续发酵。未来,以大数据实现教育个性化,用人工智能赋能教育,在成倍放大教育产能的同时,将使得优质教学资源得到充分利用,从而做到因材施教、因人施教。

对此,我们不仅要仰望星空,更要脚踏实地。正如教育家叶圣陶先生所言,教育是农业,而非工业。不仅教育需要一个发展过程,同时孩子们也如农作物一般需要成长时间,而大数据与人工智能则将成为其生长期重要的养分与辅助力量。

图片来自网络。

编辑:黄继彦

校对:王红玉

若您在阅读文章过程中发现任何错误,请在文末留言,或到后台反馈,经小编确认后,数据派将向检举读者发8.8元红包。

同一位读者指出同一篇文章多处错误,奖金不变。不同读者指出同一处错误,奖励第一位读者。

感谢一直以来您的关注和支持,希望您能够监督数据派产出更加高质的内容。

二、人工智能未来的发展前景怎么样

趋势一:AI于各行业垂直领域应用具有巨大的潜力

人工智能市场在零售、交通运输和自动化、制造业及农业等各行业垂直领域具有巨大的潜力。而驱动市场的主要因素,是人工智能技术在各种终端用户垂直领域的应用数量不断增加,尤其是改善对终端消费者服务。

当然人工智能市场要起来也受到IT基础设施完善、智能手机及智能穿戴式设备的普及。其中,以自然语言处理(NLP)应用市场占AI市场很大部分。随着自然语言处理的技术不断精进而驱动消费者服务的成长,还有:汽车信息通讯娱乐系统、AI机器人及支持AI的智能手机等领域。

趋势二:AI导入医疗保健行业维持高速成长

由于医疗保健行业大量使用大数据及人工智能,进而精准改善疾病诊断、医疗人员与患者之间人力的不平衡、降低医疗成本、促进跨行业合作关系。

此外AI还广泛应用于临床试验、大型医疗计划、医疗咨询与宣传推广和销售开发。人工智能导入医疗保健行业从2016年到2022年维持很高成长,预计从2016年的6.671亿美元达到2022年的79.888亿美元年均复合增长率为52.68%。

趋势三:AI取代屏幕成为新UI/UX接口

过去从PC到手机时代以来,用户接口都是透过屏幕或键盘来互动。随着智能喇叭(SmartSpeaker)、虚拟/增强现实(VR/AR)与自动驾驶车系统陆续进入人类生活环境,加速在不需要屏幕的情况下,人们也能够很轻松自在与运算系统沟通。

这表示着人工智能透过自然语言处理与机器学习让技术变得更为直观,也变得较易操控,未来将可以取代屏幕在用户接口与用户体验的地位。

人工智能除了在企业后端扮演重要角色外,在技术接口也可承担更复杂角色。例如:使用视觉图形的自动驾驶车,透过人工神经网络以实现实时翻译,也就是说,人工智能让接口变得更为简单且更有智能,也因此设定了未来互动的高标准模式。

趋势四:未来手机芯片一定内建AI运算核心

现阶段主流的ARM架构处理器速度不够快,若要进行大量的图像运算仍嫌不足,所以未来的手机芯片一定会内建AI运算核心。正如,苹果将3D感测技术带入iPhone之后,Android阵营智能手机将在明年跟进导入3D感测相关应用。

趋势五:AI芯片关键在于成功整合软硬件

AI芯片的核心是半导体及算法。AI硬件主要是要求更快指令周期与低功耗,包括GPU、DSP、ASIC、FPGA和神经元芯片,且须与深度学习算法相结合,而成功相结合的关键在于先进的封装技术。

总体来说GPU比FPGA快,而在功率效能方面FPGA比GPU好,所以AI硬件选择就看产品供货商的需求考虑而定。

例如,苹果的FaceID脸部辨识就是3D深度感测芯片加上神经引擎运算功能,整合高达8个组件进行分析,分别是红外线镜头、泛光感应组件、距离传感器、环境光传感器、前端相机、点阵投影器、喇叭与麦克风。苹果强调用户的生物识别数据,包含:指纹或脸部辨识都以加密形式储存在iPhone内部,所以不易被窃取。

趋势六:AI自主学习是终极目标

AI“大脑”变聪明是分阶段进行,从机器学习进化到深度学习,再进化至自主学习。目前,仍处于机器学习及深度学习的阶段,若要达到自主学习需要解决四大关键问题。

首先,是为自主机器打造一个AI平台;还要提供一个能够让自主机器进行自主学习的虚拟环境,必须符合物理法则,碰撞,压力,效果都要与现实世界一样;然后再将AI的“大脑”放到自主机器的框架中;最后建立虚拟世界入口(VR)。

目前,NVIDIA推出自主机器处理器Xavier,就在为自主机器的商用和普及做准备工作。

趋势七:最完美的架构是把CPU和GPU(或其他处理器)结合起来

未来,还会推出许多专门的领域所需的超强性能的处理器,但是CPU是通用于各种设备,什么场景都可以适用。所以,最完美的架构是把CPU和GPU(或其他处理器)结合起来。例如,NVIDIA推出CUDA计算架构,将专用功能ASIC与通用编程模型相结合,使开发人员实现多种算法。

趋势八:AR成为AI的眼睛,两者是互补、不可或缺

未来的AI需要AR,未来的AR也需要AI,可以将AR比喻成AI的眼睛。为了机器人学习而创造的在虚拟世界,本身就是虚拟现实。还有,如果要让人进入到虚拟环境去对机器人进行训练,还需要更多其它的技术。

展望未来,随着AI、物联网、VR/AR、5G等技术成熟,将带动新一波半导体产业的30年荣景,包括:内存、中央处理器、通讯与传感器四大芯片,各种新产品应用芯片需求不断增加,以中国在半导体的庞大市场优势绝对在全球可扮演关键的角色。

相关内容

热门资讯

cf游戏安全知识答题全部正确答... 一、cf生化大赏答案大全2023cf生化奖励活动的答案是什么?2023年最新答题活动已经开始。玩家可...
猜歌猜知识的游戏规则 一、猜歌名游戏规则有哪些1、本轮游戏共需20人参加,分成两组,每组十人。2、当主持人放出音乐后,猜到...
超级玛丽三代游戏知识讲解 一、网络单机游戏超级玛丽,为什么通关时必须要摘下旗子我相信小时候大家都有玩过或者是听过这款非常经典的...
dnf腾讯游戏安全知识答题答案 一、2021腾讯游戏安全知识答题答案A、都是一起玩游戏的,借给他玩玩呗B、账号密码,不要告知其他人。...
设计一款游戏需要什么知识 一、游戏设计需要什么基础游戏设计需要的基础:1、知识基础:游戏设计原理、用户体验设计程序与方法、二维...
三年级测量知识的游戏题目 一、三年级测量周长的三种方法三年级测量周长的三种方法包括直接测量、使用长度单位和利用比例关系。1、直...
奇怪的冷知识游戏下载中文 一、你知道哪些关于游戏中的奇怪冷知识许多网友们在玩游戏的时候都会总结一些游戏当中的冷知识,将这些知识...
能源利用的理论知识游戏 一、飞船太空采集能源的游戏下载地址:类型:安卓游戏-冒险解谜版本:v0.1大小:61.41M语言:中...
能科普知识的小游戏下载 一、让你爱不释手的益智类小游戏有哪些游戏市场现如今可谓竞争激烈,每一款游戏也是极尽自己的能力,想打造...
扩大知识面游戏有哪些类型 一、工作之余,有哪些能够很好地拓展知识面的手机小游戏在现在这个游戏横生的时代,游戏从一开始简单的单机...